FDM2509NZ

Monolithic Common Drain N－Channel 2．5V Specified PowerTrench ${ }^{\circledR}$ MOSFET

General Description

This dual N －Channel MOSFET has been designed using Fairchild Semiconductor＇s advanced Power Trench process to optimize the $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} @ \mathrm{~V}_{\mathrm{GS}}=2.5 \mathrm{v}$ on special MicroFET lead frame with all the drains on one side of the package．

Applications

－Li－Ion Battery Pack

Features

－8．7 A，20 V $\quad R_{\mathrm{DS}(\mathrm{ON})}=18 \mathrm{~m} \Omega @ \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V}$
$R_{\mathrm{DS}(\mathrm{ON})}=24 \mathrm{~m} \Omega$＠ $\mathrm{V}_{\mathrm{GS}}=2.5 \mathrm{~V}$
－ESD protection diode（note 3）
－Low Profile -0.8 mm maximum－in the new package MicroFET $2 \times 5 \mathrm{~mm}$

Absolute Maximum Ratings
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Ratings	Units
$\mathrm{V}_{\text {DSS }}$	Drain－Source Voltage	20	V
$\mathrm{V}_{\text {GSS }}$	Gate－Source Voltage	± 12	V
I_{D}	Drain Current －Continuous（Note 1a） - Pulsed	8.7	A
		30	
P_{D}	Power Dissipation（Steady State）（Note 1a）	2.2	W
		0.8	
$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {STG }}$	Operating and Storage Junction Temperature Range	-55 to +150	${ }^{\circ} \mathrm{C}$

Thermal Characteristics

$\mathrm{R}_{\text {өJA }}$	Thermal Resistance，Junction－to－Ambient（Note 1a）	55	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJc }}$	Thermal Resistance，Junction－to－Case（Drain）	2	

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
$2509 Z$	FDM2509NZ	$7^{\prime \prime}$	12 mm	3000 units

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units

Off Characteristics

$\mathrm{BV}_{\text {DSS }}$	Drain-Source Breakdown Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	20			V
$\frac{\Delta \mathrm{BV} \mathrm{VSS}}{\Delta \mathrm{~T}_{\mathrm{J}}}$	Breakdown Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$, Referenced to $25^{\circ} \mathrm{C}$		12		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {DSs }}$	Zero Gate Voltage Drain Current	$\mathrm{V}_{\mathrm{DS}}=16 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			1	$\mu \mathrm{A}$
I ${ }_{\text {gss }}$	Gate-Body Leakage,	$\mathrm{V}_{\mathrm{GS}}= \pm 12 \mathrm{~V}, \quad \mathrm{~V}_{\text {DS }}=0 \mathrm{~V}$			± 10	$\mu \mathrm{A}$

On Characteristics (Note 2)

$\mathrm{V}_{\mathrm{GS} \text { (th) }}$	Gate Threshold Voltage	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \quad \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	0.6	0.9	1.5	V
$\frac{\Delta \mathrm{V}}{\mathrm{G}} \frac{\mathrm{GS}(\mathrm{th})}{\mathrm{T}_{1}}$	Gate Threshold Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$, Referenced to 25 C		-3		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {DS(on) }}$	Static Drain-Source On-Resistance	$\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}$, $\mathrm{I}_{\mathrm{D}}=8.7 \mathrm{~A}$ $\mathrm{~V}_{\mathrm{GS}}=4.0 \mathrm{~V}$, $\mathrm{I}_{\mathrm{D}}=8.5 \mathrm{~A}$ $\mathrm{~V}_{\mathrm{GS}}=3.1 \mathrm{~V}$, $\mathrm{I}_{\mathrm{D}}=8.1 \mathrm{~A}$ $\mathrm{~V}_{\mathrm{GS}}=2.5 \mathrm{~V}$, $\mathrm{I}_{\mathrm{D}}=7.6 \mathrm{~A}$ $\mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=8.7 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		$\begin{gathered} \hline 13 \\ 13.5 \\ 15.5 \\ 18 \\ 18.4 \\ \hline \end{gathered}$	$\begin{aligned} & 18 \\ & 19 \\ & 21 \\ & 24 \\ & 25 \\ & \hline \end{aligned}$	$\mathrm{m} \Omega$
gfs	Forward Transconductance	$\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{D}}=8.7 \mathrm{~A}$		36		S

Dynamic Characteristics

$\mathrm{C}_{\text {iss }}$	Input Capacitance	$V_{\text {DS }}=10 \mathrm{~V}$,$\mathrm{f}=1.0 \mathrm{MHz}$	1200	pF
$\mathrm{C}_{\text {oss }}$	Output Capacitance		320	pF
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance		185	pF
R_{G}	Gate Resistance	$\mathrm{V}_{\mathrm{GS}}=50 \mathrm{mV}, \quad \mathrm{f}=1.0 \mathrm{MHz}$	2	Ω

Switching Characteristics (Note 2)

$\mathrm{t}_{\text {d(on) }}$	Turn-On Delay Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \hline \mathrm{I}_{\mathrm{D}}=1 \mathrm{~A}, \\ & \mathrm{R}_{\mathrm{GEN}}=6 \Omega \end{aligned}$	11	20	ns
t_{r}	Turn-On Rise Time			15	27	ns
$\mathrm{t}_{\mathrm{d} \text { (fff) }}$	Turn-Off Delay Time			27	43	ns
t_{f}	Turn-Off Fall Time			12	22	ns
Q_{g}	Total Gate Charge	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V} \end{aligned}$	$\mathrm{I}_{\mathrm{D}}=8.7 \mathrm{~A}$,	12	17	nC
Q_{gs}	Gate-Source Charge			2		nC
Q_{gd}	Gate-Drain Charge			4		nC

Drain-Source Diode Characteristics and Maximum Ratings

I_{S}	Maximum Continuous Drain-Source Diode Forward Current			1.8	A	
$\mathrm{~V}_{\mathrm{SD}}$	Drain-Source Diode Forward Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{S}}=1.8 \mathrm{~A} \quad$ (Note 2)		0.7	1.2	V
t_{r}	Diode Reverse Recovery Time	$\mathrm{I}_{\mathrm{F}}=8.7 \mathrm{~A}$,				
Q_{r}	Diode Reverse Recovery Charge	$\mathrm{dI}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$		20		nS

Notes:

1. $R_{\theta J A}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta J C}$ is guaranteed by design while $R_{\theta C A}$ is determined by the user's board design.

a) $55^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 \mathrm{in}^{2}$ pad of 2 oz copper

Scale 1:1 on letter size paper

b) $\quad 145^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a minimum pad of 2 oz copper
2. Pulse Test: Pulse Width $<300 \mu \mathrm{~s}$, Duty Cycle < 2.0\%
3. The diode connected between the gate and the source serves only as protection against ESD. No gate overvoltage rating is implied.

Typical Characteristics

Figure 1. On-Region Characteristics.

Figure 3. On-Resistance Variation with Temperature.

Figure 5. Transfer Characteristics.

Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Figure 7. Gate Charge Characteristics.

Figure 9. Maximum Safe Operating Area.

Figure 8. Capacitance Characteristics.

Figure 10. Single Pulse Maximum Power Dissipation.

Figure 11. Transient Thermal Response Curve
Thermal characterization performed using the conditions described in Note 1b. Transient thermal response will change depending on the circuit board design.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {TM }}$	FAST ${ }^{\circledR}$	ISOPLANAR ${ }^{\text {TM }}$	PowerSaver ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-6
ActiveArray ${ }^{\text {TM }}$	FASTr ${ }^{\text {TM }}$	LittleFET ${ }^{\text {TM }}$	PowerTrench ${ }^{\circledR}$	SuperSOT™-8
Bottomless ${ }^{\text {TM }}$	FPS ${ }^{\text {™ }}$	MICROCOUPLER ${ }^{\text {™ }}$	QFET ${ }^{\circledR}$	SyncFETTM
Build it $\mathrm{Now}^{\text {TM }}$	FRFET ${ }^{\text {™ }}$	MicroFET ${ }^{\text {TM }}$	QS ${ }^{\text {™ }}$	TCM ${ }^{\text {™ }}$
CoolFET ${ }^{\text {TM }}$	GlobalOptoisolator ${ }^{\text {TM }}$	MicroPak ${ }^{\text {TM }}$	QT Optoelectronics ${ }^{\text {TM }}$	TinyLogic ${ }^{\circledR}$
CROSSVOLT ${ }^{\text {TM }}$	GTO ${ }^{\text {™ }}$	MICROWIRE ${ }^{\text {™ }}$	Quiet Series ${ }^{\text {™ }}$	TINYOPTOTM
DOME ${ }^{\text {™ }}$	$\mathrm{HiSeC}^{\text {тM }}$	MSX ${ }^{\text {™ }}$	RapidConfigure ${ }^{\text {TM }}$	TruTranslation ${ }^{\text {TM }}$
EcoSPARK ${ }^{\text {TM }}$	$1^{2} \mathrm{C}^{\text {™ }}$	MSXPro ${ }^{\text {™ }}$	RapidConnect ${ }^{\text {TM }}$	UHC ${ }^{\text {m }}$
$\mathrm{E}^{2} \mathrm{CMOS}{ }^{\text {™ }}$	$i-L O^{\text {TM }}$	OCX ${ }^{\text {™ }}$	μ SerDes ${ }^{\text {™ }}$	UltraFET ${ }^{\text {® }}$
EnSigna ${ }^{\text {™ }}$	ImpliedDisconnect ${ }^{\text {TM }}$	OCXPro ${ }^{\text {¹ }}$	ScalarPump ${ }^{\text {TM }}$	UniFET ${ }^{\text {TM }}$
FACT ${ }^{\text {™ }}$	IntelliMAX ${ }^{\text {™ }}$	OPTOLOGIC ${ }^{\circledR}$	SILENT SWITCHER ${ }^{\circledR}$	VCX ${ }^{\text {™ }}$
FACT Quiet Series ${ }^{\text {TM }}$		OPTOPLANAR ${ }^{\text {TM }}$	SMART START ${ }^{\text {TM }}$	Wire ${ }^{\text {TM }}$
		PACMAN ${ }^{\text {TM }}$	SPM ${ }^{\text {™ }}$	
Across the board. Around the world. ${ }^{\text {TM }}$ The Power Franchise ${ }^{\circledR}$		POP ${ }^{\text {™ }}$	Stealth ${ }^{\text {TM }}$	
		Power247 ${ }^{\text {TM }}$	SuperFET ${ }^{\text {TM }}$	
Programmable Active Droop ${ }^{\text {TM }}$		PowerEdge ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-3	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHTTO MAKE CHANGES WITHOUT FURTHER NOTICE TOANY PRODUCTS HEREINTO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOTASSUME ANY LIABILITY ARISING OUT OF THEAPPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEYANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUTTHE EXPRESS WRITTENAPPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:
 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the

 user.PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

